Multiclass Classification for Transactions

Oct 20, 2022
Open in Github

For this notebook we will be looking to classify a public dataset of transactions into a number of categories that we have predefined. These approaches should be replicable to any multiclass classification use case where we are trying to fit transactional data into predefined categories, and by the end of running through this you should have a few approaches for dealing with both labelled and unlabelled datasets.

The different approaches we'll be taking in this notebook are:

  • Zero-shot Classification: First we'll do zero shot classification to put transactions in one of five named buckets using only a prompt for guidance
  • Classification with Embeddings: Following this we'll create embeddings on a labelled dataset, and then use a traditional classification model to test their effectiveness at identifying our categories
  • Fine-tuned Classification: Lastly we'll produce a fine-tuned model trained on our labelled dataset to see how this compares to the zero-shot and few-shot classification approaches
%load_ext autoreload
%autoreload
%pip install openai 'openai[datalib]' 'openai[embeddings]' transformers
import openai
import pandas as pd
import numpy as np
import json
import os

COMPLETIONS_MODEL = "gpt-4"

client = openai.OpenAI(api_key=os.environ.get("OPENAI_API_KEY", "<your OpenAI API key if you didn't set as an env var>"))
transactions = pd.read_csv('./data/25000_spend_dataset_current.csv', encoding= 'unicode_escape')
len(transactions)
359
transactions.head()
Date Supplier Description Transaction value (£)
0 21/04/2016 M & J Ballantyne Ltd George IV Bridge Work 35098.0
1 26/04/2016 Private Sale Literary & Archival Items 30000.0
2 30/04/2016 City Of Edinburgh Council Non Domestic Rates 40800.0
3 09/05/2016 Computacenter Uk Kelvin Hall 72835.0
4 09/05/2016 John Graham Construction Ltd Causewayside Refurbishment 64361.0
def request_completion(prompt):

    completion_response = openai.chat.completions.create(
                            prompt=prompt,
                            temperature=0,
                            max_tokens=5,
                            top_p=1,
                            frequency_penalty=0,
                            presence_penalty=0,
                            model=COMPLETIONS_MODEL)

    return completion_response

def classify_transaction(transaction,prompt):

    prompt = prompt.replace('SUPPLIER_NAME',transaction['Supplier'])
    prompt = prompt.replace('DESCRIPTION_TEXT',transaction['Description'])
    prompt = prompt.replace('TRANSACTION_VALUE',str(transaction['Transaction value (£)']))

    classification = request_completion(prompt).choices[0].message.content.replace('\n','')

    return classification

# This function takes your training and validation outputs from the prepare_data function of the Finetuning API, and
# confirms that each have the same number of classes.
# If they do not have the same number of classes the fine-tune will fail and return an error

def check_finetune_classes(train_file,valid_file):

    train_classes = set()
    valid_classes = set()
    with open(train_file, 'r') as json_file:
        json_list = list(json_file)
        print(len(json_list))

    for json_str in json_list:
        result = json.loads(json_str)
        train_classes.add(result['completion'])
        #print(f"result: {result['completion']}")
        #print(isinstance(result, dict))

    with open(valid_file, 'r') as json_file:
        json_list = list(json_file)
        print(len(json_list))

    for json_str in json_list:
        result = json.loads(json_str)
        valid_classes.add(result['completion'])
        #print(f"result: {result['completion']}")
        #print(isinstance(result, dict))

    if len(train_classes) == len(valid_classes):
        print('All good')

    else:
        print('Classes do not match, please prepare data again')

Zero-shot Classification

We'll first assess the performance of the base models at classifying these transactions using a simple prompt. We'll provide the model with 5 categories and a catch-all of "Could not classify" for ones that it cannot place.

zero_shot_prompt = '''You are a data expert working for the National Library of Scotland.
You are analysing all transactions over £25,000 in value and classifying them into one of five categories.
The five categories are Building Improvement, Literature & Archive, Utility Bills, Professional Services and Software/IT.
If you can't tell what it is, say Could not classify

Transaction:

Supplier: SUPPLIER_NAME
Description: DESCRIPTION_TEXT
Value: TRANSACTION_VALUE

The classification is:'''
# Get a test transaction
transaction = transactions.iloc[0]

# Interpolate the values into the prompt
prompt = zero_shot_prompt.replace('SUPPLIER_NAME',transaction['Supplier'])
prompt = prompt.replace('DESCRIPTION_TEXT',transaction['Description'])
prompt = prompt.replace('TRANSACTION_VALUE',str(transaction['Transaction value (£)']))

# Use our completion function to return a prediction
completion_response = request_completion(prompt)
print(completion_response.choices[0].text)
 Building Improvement

Our first attempt is correct, M & J Ballantyne Ltd are a house builder and the work they performed is indeed Building Improvement.

Lets expand the sample size to 25 and see how it performs, again with just a simple prompt to guide it

test_transactions = transactions.iloc[:25]
test_transactions['Classification'] = test_transactions.apply(lambda x: classify_transaction(x,zero_shot_prompt),axis=1)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/ipykernel_launcher.py:2: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  
test_transactions['Classification'].value_counts()
 Building Improvement    14
 Could not classify       5
 Literature & Archive     3
 Software/IT              2
 Utility Bills            1
Name: Classification, dtype: int64
test_transactions.head(25)
Date Supplier Description Transaction value (£) Classification
0 21/04/2016 M & J Ballantyne Ltd George IV Bridge Work 35098.0 Building Improvement
1 26/04/2016 Private Sale Literary & Archival Items 30000.0 Literature & Archive
2 30/04/2016 City Of Edinburgh Council Non Domestic Rates 40800.0 Utility Bills
3 09/05/2016 Computacenter Uk Kelvin Hall 72835.0 Software/IT
4 09/05/2016 John Graham Construction Ltd Causewayside Refurbishment 64361.0 Building Improvement
5 09/05/2016 A McGillivray Causewayside Refurbishment 53690.0 Building Improvement
6 16/05/2016 John Graham Construction Ltd Causewayside Refurbishment 365344.0 Building Improvement
7 23/05/2016 Computacenter Uk Kelvin Hall 26506.0 Software/IT
8 23/05/2016 ECG Facilities Service Facilities Management Charge 32777.0 Building Improvement
9 23/05/2016 ECG Facilities Service Facilities Management Charge 32777.0 Building Improvement
10 30/05/2016 ALDL ALDL Charges 32317.0 Could not classify
11 10/06/2016 Wavetek Ltd Kelvin Hall 87589.0 Could not classify
12 10/06/2016 John Graham Construction Ltd Causewayside Refurbishment 381803.0 Building Improvement
13 28/06/2016 ECG Facilities Service Facilities Management Charge 32832.0 Building Improvement
14 30/06/2016 Glasgow City Council Kelvin Hall 1700000.0 Building Improvement
15 11/07/2016 Wavetek Ltd Kelvin Hall 65692.0 Could not classify
16 11/07/2016 John Graham Construction Ltd Causewayside Refurbishment 139845.0 Building Improvement
17 15/07/2016 Sotheby'S Literary & Archival Items 28500.0 Literature & Archive
18 18/07/2016 Christies Literary & Archival Items 33800.0 Literature & Archive
19 25/07/2016 A McGillivray Causewayside Refurbishment 30113.0 Building Improvement
20 31/07/2016 ALDL ALDL Charges 32317.0 Could not classify
21 08/08/2016 ECG Facilities Service Facilities Management Charge 32795.0 Building Improvement
22 15/08/2016 Creative Video Productions Ltd Kelvin Hall 26866.0 Could not classify
23 15/08/2016 John Graham Construction Ltd Causewayside Refurbishment 196807.0 Building Improvement
24 24/08/2016 ECG Facilities Service Facilities Management Charge 32795.0 Building Improvement

Initial results are pretty good even with no labelled examples! The ones that it could not classify were tougher cases with few clues as to their topic, but maybe if we clean up the labelled dataset to give more examples we can get better performance.

Classification with Embeddings

Lets create embeddings from the small set that we've classified so far - we've made a set of labelled examples by running the zero-shot classifier on 101 transactions from our dataset and manually correcting the 15 Could not classify results that we got

Create embeddings

This initial section reuses the approach from the Get_embeddings_from_dataset Notebook to create embeddings from a combined field concatenating all of our features

df = pd.read_csv('./data/labelled_transactions.csv')
df.head()
Date Supplier Description Transaction value (£) Classification
0 15/08/2016 Creative Video Productions Ltd Kelvin Hall 26866 Other
1 29/05/2017 John Graham Construction Ltd Causewayside Refurbishment 74806 Building Improvement
2 29/05/2017 Morris & Spottiswood Ltd George IV Bridge Work 56448 Building Improvement
3 31/05/2017 John Graham Construction Ltd Causewayside Refurbishment 164691 Building Improvement
4 24/07/2017 John Graham Construction Ltd Causewayside Refurbishment 27926 Building Improvement
df['combined'] = "Supplier: " + df['Supplier'].str.strip() + "; Description: " + df['Description'].str.strip() + "; Value: " + str(df['Transaction value (£)']).strip()
df.head(2)
Date Supplier Description Transaction value (£) Classification combined
0 15/08/2016 Creative Video Productions Ltd Kelvin Hall 26866 Other Supplier: Creative Video Productions Ltd; Desc...
1 29/05/2017 John Graham Construction Ltd Causewayside Refurbishment 74806 Building Improvement Supplier: John Graham Construction Ltd; Descri...
from transformers import GPT2TokenizerFast
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")

df['n_tokens'] = df.combined.apply(lambda x: len(tokenizer.encode(x)))
len(df)
101
embedding_path = './data/transactions_with_embeddings_100.csv'
from utils.embeddings_utils import get_embedding

df['babbage_similarity'] = df.combined.apply(lambda x: get_embedding(x, model='gpt-4'))
df['babbage_search'] = df.combined.apply(lambda x: get_embedding(x, model='gpt-4'))
df.to_csv(embedding_path)
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, accuracy_score
from ast import literal_eval

fs_df = pd.read_csv(embedding_path)
fs_df["babbage_similarity"] = fs_df.babbage_similarity.apply(literal_eval).apply(np.array)
fs_df.head()
Unnamed: 0 Date Supplier Description Transaction value (£) Classification combined n_tokens babbage_similarity babbage_search
0 0 15/08/2016 Creative Video Productions Ltd Kelvin Hall 26866 Other Supplier: Creative Video Productions Ltd; Desc... 136 [-0.009802100248634815, 0.022551486268639565, ... [-0.00232666521333158, 0.019198870286345482, 0...
1 1 29/05/2017 John Graham Construction Ltd Causewayside Refurbishment 74806 Building Improvement Supplier: John Graham Construction Ltd; Descri... 140 [-0.009065819904208183, 0.012094118632376194, ... [0.005169447045773268, 0.00473341578617692, -0...
2 2 29/05/2017 Morris & Spottiswood Ltd George IV Bridge Work 56448 Building Improvement Supplier: Morris & Spottiswood Ltd; Descriptio... 141 [-0.009000026620924473, 0.02405017428100109, -... [0.0028343256562948227, 0.021166473627090454, ...
3 3 31/05/2017 John Graham Construction Ltd Causewayside Refurbishment 164691 Building Improvement Supplier: John Graham Construction Ltd; Descri... 140 [-0.009065819904208183, 0.012094118632376194, ... [0.005169447045773268, 0.00473341578617692, -0...
4 4 24/07/2017 John Graham Construction Ltd Causewayside Refurbishment 27926 Building Improvement Supplier: John Graham Construction Ltd; Descri... 140 [-0.009065819904208183, 0.012094118632376194, ... [0.005169447045773268, 0.00473341578617692, -0...
X_train, X_test, y_train, y_test = train_test_split(
    list(fs_df.babbage_similarity.values), fs_df.Classification, test_size=0.2, random_state=42
)

clf = RandomForestClassifier(n_estimators=100)
clf.fit(X_train, y_train)
preds = clf.predict(X_test)
probas = clf.predict_proba(X_test)

report = classification_report(y_test, preds)
print(report)
                      precision    recall  f1-score   support

Building Improvement       0.92      1.00      0.96        11
Literature & Archive       1.00      1.00      1.00         3
               Other       0.00      0.00      0.00         1
         Software/IT       1.00      1.00      1.00         1
       Utility Bills       1.00      1.00      1.00         5

            accuracy                           0.95        21
           macro avg       0.78      0.80      0.79        21
        weighted avg       0.91      0.95      0.93        21

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))

Performance for this model is pretty strong, so creating embeddings and using even a simpler classifier looks like an effective approach as well, with the zero-shot classifier helping us do the initial classification of the unlabelled dataset.

Lets take it one step further and see if a fine-tuned model trained on this same labelled datasets gives us comparable results

Fine-tuned Transaction Classification

For this use case we're going to try to improve on the few-shot classification from above by training a fine-tuned model on the same labelled set of 101 transactions and applying this fine-tuned model on group of unseen transactions

Building Fine-tuned Classifier

We'll need to do some data prep first to get our data ready. This will take the following steps:

  • First we'll list out our classes and replace them with numeric identifiers. Making the model predict a single token rather than multiple consecutive ones like 'Building Improvement' should give us better results
  • We also need to add a common prefix and suffix to each example to aid the model in making predictions - in our case our text is already started with 'Supplier' and we'll add a suffix of '\n\n###\n\n'
  • Lastly we'll aid a leading whitespace onto each of our target classes for classification, again to aid the model
ft_prep_df = fs_df.copy()
len(ft_prep_df)
101
ft_prep_df.head()
Unnamed: 0 Date Supplier Description Transaction value (£) Classification combined n_tokens babbage_similarity babbage_search
0 0 15/08/2016 Creative Video Productions Ltd Kelvin Hall 26866 Other Supplier: Creative Video Productions Ltd; Desc... 12 [-0.009630300104618073, 0.009887108579277992, ... [-0.008217384107410908, 0.025170527398586273, ...
1 1 29/05/2017 John Graham Construction Ltd Causewayside Refurbishment 74806 Building Improvement Supplier: John Graham Construction Ltd; Descri... 16 [-0.006144719664007425, -0.0018709596479311585... [-0.007424891460686922, 0.008475713431835175, ...
2 2 29/05/2017 Morris & Spottiswood Ltd George IV Bridge Work 56448 Building Improvement Supplier: Morris & Spottiswood Ltd; Descriptio... 17 [-0.005225738976150751, 0.015156379900872707, ... [-0.007611643522977829, 0.030322374776005745, ...
3 3 31/05/2017 John Graham Construction Ltd Causewayside Refurbishment 164691 Building Improvement Supplier: John Graham Construction Ltd; Descri... 16 [-0.006144719664007425, -0.0018709596479311585... [-0.007424891460686922, 0.008475713431835175, ...
4 4 24/07/2017 John Graham Construction Ltd Causewayside Refurbishment 27926 Building Improvement Supplier: John Graham Construction Ltd; Descri... 16 [-0.006144719664007425, -0.0018709596479311585... [-0.007424891460686922, 0.008475713431835175, ...
classes = list(set(ft_prep_df['Classification']))
class_df = pd.DataFrame(classes).reset_index()
class_df.columns = ['class_id','class']
class_df  , len(class_df)
(   class_id                 class
 0         0  Literature & Archive
 1         1         Utility Bills
 2         2  Building Improvement
 3         3           Software/IT
 4         4                 Other,
 5)
ft_df_with_class = ft_prep_df.merge(class_df,left_on='Classification',right_on='class',how='inner')

# Adding a leading whitespace onto each completion to help the model
ft_df_with_class['class_id'] = ft_df_with_class.apply(lambda x: ' ' + str(x['class_id']),axis=1)
ft_df_with_class = ft_df_with_class.drop('class', axis=1)

# Adding a common separator onto the end of each prompt so the model knows when a prompt is terminating
ft_df_with_class['prompt'] = ft_df_with_class.apply(lambda x: x['combined'] + '\n\n###\n\n',axis=1)
ft_df_with_class.head()
Unnamed: 0 Date Supplier Description Transaction value (£) Classification combined n_tokens babbage_similarity babbage_search class_id prompt
0 0 15/08/2016 Creative Video Productions Ltd Kelvin Hall 26866 Other Supplier: Creative Video Productions Ltd; Desc... 12 [-0.009630300104618073, 0.009887108579277992, ... [-0.008217384107410908, 0.025170527398586273, ... 4 Supplier: Creative Video Productions Ltd; Desc...
1 51 31/03/2017 NLS Foundation Grant Payment 177500 Other Supplier: NLS Foundation; Description: Grant P... 11 [-0.022305507212877274, 0.008543581701815128, ... [-0.020519884303212166, 0.01993306167423725, -... 4 Supplier: NLS Foundation; Description: Grant P...
2 70 26/06/2017 British Library Legal Deposit Services 50056 Other Supplier: British Library; Description: Legal ... 11 [-0.01019938476383686, 0.015277703292667866, -... [-0.01843327097594738, 0.03343546763062477, -0... 4 Supplier: British Library; Description: Legal ...
3 71 24/07/2017 ALDL Legal Deposit Services 27067 Other Supplier: ALDL; Description: Legal Deposit Ser... 11 [-0.008471488021314144, 0.004098685923963785, ... [-0.012966590002179146, 0.01299362163990736, 0... 4 Supplier: ALDL; Description: Legal Deposit Ser...
4 100 24/07/2017 AM Phillip Vehicle Purchase 26604 Other Supplier: AM Phillip; Description: Vehicle Pur... 10 [-0.003459023078903556, 0.004626389592885971, ... [-0.0010945454705506563, 0.008626140654087067,... 4 Supplier: AM Phillip; Description: Vehicle Pur...
# This step is unnecessary if you have a number of observations in each class
# In our case we don't, so we shuffle the data to give us a better chance of getting equal classes in our train and validation sets
# Our fine-tuned model will error if we have less classes in the validation set, so this is a necessary step

import random

labels = [x for x in ft_df_with_class['class_id']]
text = [x for x in ft_df_with_class['prompt']]
ft_df = pd.DataFrame(zip(text, labels), columns = ['prompt','class_id']) #[:300]
ft_df.columns = ['prompt','completion']
ft_df['ordering'] = ft_df.apply(lambda x: random.randint(0,len(ft_df)), axis = 1)
ft_df.set_index('ordering',inplace=True)
ft_df_sorted = ft_df.sort_index(ascending=True)
ft_df_sorted.head()
prompt completion
ordering
0 Supplier: Sothebys; Description: Literary & Ar... 0
1 Supplier: Sotheby'S; Description: Literary & A... 0
2 Supplier: City Of Edinburgh Council; Descripti... 1
2 Supplier: John Graham Construction Ltd; Descri... 2
3 Supplier: John Graham Construction Ltd; Descri... 2
# This step is to remove any existing files if we've already produced training/validation sets for this classifier
#!rm transactions_grouped*

# We output our shuffled dataframe to a .jsonl file and run the prepare_data function to get us our input files
ft_df_sorted.to_json("transactions_grouped.jsonl", orient='records', lines=True)
!openai tools fine_tunes.prepare_data -f transactions_grouped.jsonl -q
# This functions checks that your classes all appear in both prepared files
# If they don't, the fine-tuned model creation will fail
check_finetune_classes('transactions_grouped_prepared_train.jsonl','transactions_grouped_prepared_valid.jsonl')
31
8
All good
# This step creates your model
!openai api fine_tunes.create -t "transactions_grouped_prepared_train.jsonl" -v "transactions_grouped_prepared_valid.jsonl" --compute_classification_metrics --classification_n_classes 5 -m curie

# You can use following command to get fine tuning job status and model name, replace the job name with your job
#!openai api fine_tunes.get -i ft-YBIc01t4hxYBC7I5qhRF3Qdx
# Congrats, you've got a fine-tuned model!
# Copy/paste the name provided into the variable below and we'll take it for a spin
fine_tuned_model = 'curie:ft-personal-2022-10-20-10-42-56'

Applying Fine-tuned Classifier

Now we'll apply our classifier to see how it performs. We only had 31 unique observations in our training set and 8 in our validation set, so lets see how the performance is

test_set = pd.read_json('transactions_grouped_prepared_valid.jsonl', lines=True)
test_set.head()
prompt completion
0 Supplier: Wavetek Ltd; Description: Kelvin Hal... 2
1 Supplier: ECG Facilities Service; Description:... 1
2 Supplier: M & J Ballantyne Ltd; Description: G... 2
3 Supplier: Private Sale; Description: Literary ... 0
4 Supplier: Ex Libris; Description: IT equipment... 3
test_set['predicted_class'] = test_set.apply(lambda x: openai.chat.completions.create(model=fine_tuned_model, prompt=x['prompt'], max_tokens=1, temperature=0, logprobs=5),axis=1)
test_set['pred'] = test_set.apply(lambda x : x['predicted_class']['choices'][0]['text'],axis=1)
test_set['result'] = test_set.apply(lambda x: str(x['pred']).strip() == str(x['completion']).strip(), axis = 1)
test_set['result'].value_counts()
True     4
False    4
Name: result, dtype: int64

Performance is not great - unfortunately this is expected. With only a few examples of each class, the above approach with embeddings and a traditional classifier worked better.

A fine-tuned model works best with a great number of labelled observations. If we had a few hundred or thousand we may get better results, but lets do one last test on a holdout set to confirm that it doesn't generalise well to a new set of observations

holdout_df = transactions.copy().iloc[101:]
holdout_df.head()
Date Supplier Description Transaction value (£)
101 23/10/2017 City Building LLP Causewayside Refurbishment 53147.0
102 30/10/2017 ECG Facilities Service Facilities Management Charge 35758.0
103 30/10/2017 ECG Facilities Service Facilities Management Charge 35758.0
104 06/11/2017 John Graham Construction Ltd Causewayside Refurbishment 134208.0
105 06/11/2017 ALDL Legal Deposit Services 27067.0
holdout_df['combined'] = "Supplier: " + holdout_df['Supplier'].str.strip() + "; Description: " + holdout_df['Description'].str.strip() + '\n\n###\n\n' # + "; Value: " + str(df['Transaction value (£)']).strip()
holdout_df['prediction_result'] = holdout_df.apply(lambda x: openai.chat.completions.create(model=fine_tuned_model, prompt=x['combined'], max_tokens=1, temperature=0, logprobs=5),axis=1)
holdout_df['pred'] = holdout_df.apply(lambda x : x['prediction_result']['choices'][0]['text'],axis=1)
holdout_df.head(10)
Date Supplier Description Transaction value (£) combined prediction_result pred
101 23/10/2017 City Building LLP Causewayside Refurbishment 53147.0 Supplier: City Building LLP; Description: Caus... {'id': 'cmpl-63YDadbYLo8xKsGY2vReOFCMgTOvG', '... 2
102 30/10/2017 ECG Facilities Service Facilities Management Charge 35758.0 Supplier: ECG Facilities Service; Description:... {'id': 'cmpl-63YDbNK1D7UikDc3xi5ATihg5kQEt', '... 2
103 30/10/2017 ECG Facilities Service Facilities Management Charge 35758.0 Supplier: ECG Facilities Service; Description:... {'id': 'cmpl-63YDbwfiHjkjMWsfTKNt6naeqPzOe', '... 2
104 06/11/2017 John Graham Construction Ltd Causewayside Refurbishment 134208.0 Supplier: John Graham Construction Ltd; Descri... {'id': 'cmpl-63YDbWAndtsRqPTi2ZHZtPodZvOwr', '... 2
105 06/11/2017 ALDL Legal Deposit Services 27067.0 Supplier: ALDL; Description: Legal Deposit Ser... {'id': 'cmpl-63YDbDu7WM3svYWsRAMdDUKtSFDBu', '... 2
106 27/11/2017 Maggs Bros Ltd Literary & Archival Items 26500.0 Supplier: Maggs Bros Ltd; Description: Literar... {'id': 'cmpl-63YDbxNNI8ZH5CJJNxQ0IF9Zf925C', '... 0
107 30/11/2017 Glasgow City Council Kelvin Hall 42345.0 Supplier: Glasgow City Council; Description: K... {'id': 'cmpl-63YDb8R1FWu4bjwM2xE775rouwneV', '... 2
108 11/12/2017 ECG Facilities Service Facilities Management Charge 35758.0 Supplier: ECG Facilities Service; Description:... {'id': 'cmpl-63YDcAPsp37WhbPs9kwfUX0kBk7Hv', '... 2
109 11/12/2017 John Graham Construction Ltd Causewayside Refurbishment 159275.0 Supplier: John Graham Construction Ltd; Descri... {'id': 'cmpl-63YDcML2welrC3wF0nuKgcNmVu1oQ', '... 2
110 08/01/2018 ECG Facilities Service Facilities Management Charge 35758.0 Supplier: ECG Facilities Service; Description:... {'id': 'cmpl-63YDc95SSdOHnIliFB2cjMEEm7Z2u', '... 2
holdout_df['pred'].value_counts()
 2    231
 0     27
Name: pred, dtype: int64

Well those results were similarly underwhelming - so we've learned that with a dataset with a small number of labelled observations, either zero-shot classification or traditional classification with embeddings return better results than a fine-tuned model.

A fine-tuned model is still a great tool, but is more effective when you have a larger number of labelled examples for each class that you're looking to classify